Affective Abstract Image Classification and Retrieval Using Multiple Kernel Learning

نویسندگان

  • He Zhang
  • Zhirong Yang
  • Mehmet Gönen
  • Markus Koskela
  • Jorma Laaksonen
  • Timo Honkela
  • Erkki Oja
چکیده

Emotional semantic image retrieval systems aim at incorporating the user’s affective states for responding adequately to the user’s interests. One challenge is to select features specific to image affect detection. Another challenge is to build effective learning models or classifiers to bridge the so-called “affective gap”. In this work, we study the affective classification and retrieval of abstract images by applying multiple kernel learning framework. An image can be represented by different feature spaces and multiple kernel learning can utilize all these feature representations simultaneously (i.e., multiview learning), such that it jointly learns the feature representation weights and corresponding classifier in an intelligent manner. Our experimental results on two abstract image datasets demonstrate the advantage of the multiple kernel learning framework for image affect detection in terms of feature selection, classification performance, and interpretation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding emotional impact of images using Bayesian multiple kernel learning

Affective classification and retrieval of multimedia such as audio, image, and video have become emerging research areas in recent years. The previous research focused on designing features and developing feature extraction methods. Generally, a multimedia content can be represented with different feature representations (i.e., views). However, the most suitable feature representation related t...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Exploiting Multimedia Content: a Machine Learning Based Approach

This thesis explores use of machine learning for multimedia content management involving single/multiple features, modalities and concepts. We introduce shape based feature for binary patterns and apply it for recognition and retrieval application in single and multiple feature based architecture. The multiple feature based recognition and retrieval frameworks are based on the theory of multipl...

متن کامل

Retrieving and Classifying Affective Images via Deep Metric Learning

Affective image understanding has been extensively studied in the last decade since more and more users express emotion via visual contents. While current algorithms based on convolutional neural networks aim to distinguish emotional categories in a discrete label space, the task is inherently ambiguous. This is mainly because emotional labels with the same polarity (i.e., positive or negative)...

متن کامل

NSF-ITR/IM PROJECT: 2002 Abstracts From Bits to Information: Statistical Learning Technologies for Digital Information Management Search

Project Title: Support Vector Machines for Multiple Instance Learning PI: T. Hofmann Participants: Stuart Andrews and Thomas Hofmann Abstract: Multiple Instance Learning (MIL) is an important generalization of standard supervised binary classification. In MIL labels are not available for individual training patterns, but are associated with sets of patterns, which introduces additional uncertai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013